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Abstract. Lattice motivated triplet color scalar field theory is analyzed. We consider non-minimal as well
as covariant derivative coupling with SU(2) gauge fields. Field configurations generated by external electric
sources are presented. Moreover non-Abelian magnetic monopoles are found. Dependence on the spatial
coordinates in the obtained solutions is identical as in the usual Abelian case. We show also that after a
decomposition of the fields a modified Faddeev–Niemi action can be obtained. It contains explicit O(3)
symmetry breaking term parameterized by the condensate of an isoscalar field. Due to that Goldstone
bosons observed in the original Faddeev–Niemi model are removed.

1 Introduction

At present there exist several approaches to the dynamics
of non-Abelian gauge fields in the infrared region. The
most popular one – lattice QCD (see e.g., [1]) – deals
with the theory on the most fundamental level and leads
to many important results concerning hadron spectrum.
However, an unavoidable ingredient of this class of methods
are numerical studieswhich are in fact theirmain drawback.
If the method itself was correct and relevant numerical
simulations produced output comparable with experiment,
the most fascinating dynamics of gluonic fields would be
still veiled in numerics. The situation is even worse since
the results of ongoing lattice studies remain controversial.

The whole bunch of phenomenological models in con-
tinuum space–time has been proposed as an alternative
to lattice gauge theory. To call only a few let us men-
tion here stochastic vacuum model [2], various realizations
of the Abelian projection and monopole dominance (see
e.g., [3]), the Faddeev–Niemi model [4,5], and color dielec-
tric models. All these models attempt to describe a number
of known features of non-perturbative QCD but their rela-
tion to the original theory is usually not completely clear.
In particular none of them has been strictly derived from
the underlying fundamental theory.

A promising step in this direction was done by Nielsen
and Patkos a long time ago [6]. They pointed out that color
dielectric models can be derived from the lattice QCD by
the so-called blocking procedure described in more detail
in the next section. In principle this method can be used to
obtain color dielectric model from the full theory as a result
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of well–defined sequence of steps. However, the procedure
turned out to be far too complicated to be accomplished in
practice. Every realization of this scenario known to date
either leads only to partial results or is based on strong
and probably not well justified assumptions.

The color dielectric models derived from lattice theory
have certain common features which do not depend on
details of the blocking procedure [7]. In particular field
contents of the resulting effective model is universal for all
these approaches. It allows one to construct an effective
action with requirements of its invariance with respects
to Lorentz and color group instead of attempting strict
derivation. As we show in this paper this set of small and
natural assumptions astonishingly restricts the family of
possible models.

In the discussion presented below we consider a color
dielectric model with non-Abelian gauge fields and non-
Abelian scalar dielectric field. We show that the form of
the action we deal with is a natural consequence of cho-
sen set of field degrees of freedom and invariance require-
ments.Ourmodel easily reproduces confinement of external
sources known from commonly discussed models with or-
dinary scalar field. In addition, after redefining degrees of
freedom by means of the generalized Faddeev–Niemi–Cho
decomposition we end up with a modified Faddeev–Niemi
action which can be applied do describe physical excita-
tions in the glueball sector. In contradiction to the original
Faddeev–Niemi model ,our action explicitly brakes O(3)
invariance. To the best of our knowledge, this is the first
time when this fundamental property is studied in color
dielectric type model.

The plan of our paper is the following. In the next section
we define relevant degrees of freedom and postulate simple
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Lorentz and gauge invariant action. Then we solve field
equations for the model and demonstrate how the confining
potential for external sources aswell asmagneticmonopoles
emerge in the framework of the discussed theory. In Sect. 4
we perform decomposition of fields and obtain an effective
theory of Faddeev–Niemi type corresponding to our non-
Abelian color dielectric model in the glueball sector. Finally
we briefly summarize our results and propose some possible
extensions of the present discussion.

2 Non-Abelian color dielectric action

In a phenomenological model proposed a long time ago
by Friedberg and Lee [8] the confinement is modeled by
a scalar field coupled non-minimally to the non-Abelian
gauge field, which can be treated as a low–momentum
component of the original gluon field. The Friedberg–Lee
model constituted a new way of thinking about non-pe-
turbative dynamics of gluon fields and established simple
physical picture of confinement. Many models that followed
the same pattern (see e.g., [9]) have been astonishingly
successful in building physical intuition concerning low-
energy sector of non-Abelian gauge fields. However, they
have been also too arbitrary to be seriously considered as
physically well justified theory of strong interactions in
certain momenta region.

In spite of the fact that the color dielectric models have
been constructed as phenomenological models, there exists
a deep connection with the original quantum theory. In fact,
these models emerge from QCD when the so called coarse-
grained gluon field Âµ is considered. This coarse-grained
gluon field is defined as an average of the original SU(N)
gluon field âµ over a certain volume in space-time. Using
the well-known Nielsen-Patkos definition we will consider
a parallel transport along a path Γ connecting two space-
time points x and x + ε

W (x + ε, x) = P exp
(

i

∫
Γ

âµdxµ

)
. (1)

In the next step we introduce the coarse-grained counter-
part of W (x + ε, x) which is defined as an average over all
paths Γ . Then one can expand it with respect to ε

W (x + ε, x) = Σ̂ + iεµÂµ + . . . , (2)

where additional fields appear along with the coarse-grai-
ned gluon field Âµ. Thus we derived a new effective theory
with extended field content. Another feature which can be
immediately observed concerns the gauge invariance of the
effective model. The coarse-grained gluon field transforms
under gauge SU(N) transformation ω(x) in the follow-
ing way:

Â′
µ(x) = ω(x)Âµω−1(x) − i∂µω(x)Σ̂ω−1(x) , (3)

where Σ̂ belongs to the adjoint representation of SU(N).
It is not known in general how a gauge invariant action can
be constructed by means of these effective fields. However,

in the very special case when we assume that Σ̂ = σ I i.e.,
it is proportional to unit matrix the Friedberg–Lee model
can be derived.

The main aim of the present work is to introduce and
discuss a model where Σ̂ is not constrained to the scalar
component only. In order to accomplish it we take advan-
tage of the lattice version of the coarse-grained gluon field
introduced and developed by Mack [10]. In this framework
W (x + ε, x) is replaced by the link variable Mk(x), where
k = 1 . . . 4 denotes directions on the lattice. In Mack’s ap-
proach the link variable is an averaged sum of products of
the original SU(N) fields. In case of the SU(2) gauge group
the effective link variable is just a U(2) matrix. Of course,
it is unlikely in the case of SU(N) with N ≥ 3. Then the
link variable is assumed to be an arbitrary complex N × N
matrix.

In general, any N × N matrix can be decomposed in
the following way

Mk(x) = V̂k(x)χ̂k(x)eiθk(x) (4)

where V̂k is a unitary SU(N) matrix, χ̂k is a positively
defined hermitian N × N matrix and θk is a real number.
The interpretation of these field is still a little bit mysteri-
ous. Usually one relates V̂k to a traceless hermitian gauge
field Âk - lattice gluon field:

V̂k(x) = eiÂk(x).

Analogously, θk is a new Abelian gauge field. The last field
χ̂k is known as a color dielectric field.

Transformation properties of the lattice field introduced
above can be simply deducted from its definition [7]. θk

turns out to have standard vector transformation law as
expected. On the contrary the color dielectric field trans-
forms as:

χ̂k(x) = χ̂−k(x + bek) , (5)

where b denotes lattice spacing and therefore it cannot
be regarded as a Lorentz vector. This problem has been
addressed many times (see e.g., [7, 11]) but no ultimate
conclusion has been made so far. In the discussion below,
we restrict ourselves to the simplest possibility taking χ̂k

as a scalar.
In principle the form of color dielectric action should

strictly follow from the macroscopic theory by the block-
ing procedure. Unfortunately, this point of the approach
remains spurious and no commonly accepted color dielec-
tric action has been directly derived yet. Many authors
agree that the relevant physical features are given by the
diagonal part of the color dielectric field. Thus, one takes:

χ̂k(x) = χk(x) I (6)

where I is N × N unit matrix. However, there are no
clear arguments that this approximation is valid i.e., that
the off-diagonal degrees of freedom do not influence the
physics of the model. Due to that one should investigate
the full non-Abelian color dielectric field. We follow [11]
and introduce a new color dielectric field

χ̂k(x) = (φ̂k(x))2 , (7)
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where

φ̂k(x) = φk(x) I + λaφa
k(x) . (8)

Here λa are Gell-Mann matrices in the case of SU(3) group.
In this paper we propose a classical continuum effective

action based on the gauge fields and color dielectric field.
This means that we replace lattice variables, defined in
the four dimensional Euclidean space-time, by continuous
fields in Minkowski space-time

{
Âk, θk, φ̂k

}
−→

{
Âµ, θµ, φ̂

}
(9)

One should be aware that there are a lot of questions con-
cerning this substitution. However, as we are here mainly
interested in the definition of the relevant variables for the
low energy gluodynamics the exact form of the continu-
ous limit is not so important (it inflects the action not the
fields). Due to that we treat this problem in the most naive
way. Moreover, we assume ‘minimal non-trivial’ situation
that is we neglect Abelian gauge field θµ. In addition the
full color gauge group SU(3) is substituted by its subgroup
SU(2). It is worth noting that starting the whole construc-
tion from 2 × 2 matrices leads us to the standard scalar
(in Lorentz as well as in color group) color dielectric field
and not to SU(2) field. However, we are aiming at studying
the simplest imaginable model with non-Abelian dielectric
function as a introductory step to the proper gauge group
even if it does not fit the general pattern. Thus we take

φ̂ = σaφa , (10)

where σa are Pauli matrices, a = 1, 2, 3. In the realistic
situation one should obviously deal with the full gauge
group. As one can easily check adding the diagonal part
φ I in (10) does not change the results obtained below.

Let us now proceed to construction of the action for
our model. As it was mentioned above we do not attempt
to derive it strictly from the lattice formulation. Instead,
we build the simplest Lorentz and gauge invariant action
using previously chosen fields.

The Abelian color dielectric field couples usually to the
gauge field via the so-called dielectric function. Here sit-
uation is more subtle. On account of the fact that color
dielectric field is a vector in the color space it transforms in
the fundamental representation under the gauge transfor-
mation. Thus the standard derivative in the kinetic term
has to be replaced by the covariant one Dµφa. It is the
most natural way of preserving gauge invariance of the
gradient term. On the other hand color dielectric mecha-
nism demands non-minimal coupling of dielectric function
σ to the standard Yang–Mills invariant. This is the crucial
point – the coupling between color dielectric and gauge field
is double folded. As we show it in the next sections the
minimal coupling is connected with glueball (topological)
sector of the model whereas non-minimal coupling assures
confinement of external electric sources.

To conclude, the simplest non-Abelian gauge andLorentz
invariant extension of the color dielectric action reads as fol-

lows

S =
∫

d4x

[
− σ

4

(
φaφa

Λ2

)
F a

µνF aµν +
1
2

(Dµφa)(Dµφa)
]

,

(11)
where the covariant derivative is defined in the standard
manner

Dµφa = ∂µφa − εabcAb
µφc . (12)

and dielectric function is assumed to have usual form,
known from color dielectric models [9, 13]:

σ =
(

φaφa

Λ2

)4δ

, (13)

where δ > 1
4 and Λ is a dimensional constant setting an en-

ergy scale in the model. For completeness, let us mention
a dielectric function which allows for the linear confine-
ment [14]

σ = exp
(

b
φaφa

Λ2

)
. (14)

Other dielectric functions has been also considered (see.
e.g., [15, 16]). In general, such model can include also a
potential term for the non-Abelian color dielectric field.
Then the vacuum value of this field is fixed by the minimum
of the potential. In our investigation, for simplicity reasons,
the potential will be dropped and asymptotic value of φ is
a free parameter.

The pertinent equations of motion for the model defined
above read

Dµ

[
σ

(
φaφa

Λ2

)
F aµν

]
= εabcφbDνφc (15)

and
DµDµφa +

1
2

F a
µνF aµνσ′φa = 0 , (16)

where prime denotes differentiation with respect to φaφa.
In the next section some solutions of these equations will
be presented.

3 Solutions

3.1 Electric case

In this subsection a solution with external electric charge
will be constructed. Unfortunately, exact solutions are
known only in the Abelian sector of our model. In the other
words, we are forced to investigate the standard Abelian
color dielectric theory. However, as we it will be shown
below even in the Abelian version our model reproduces
confinement of quarks. It seems to be an advantage of the
model that one does not have to deal with the full non-
Abelian theory to find confining solutions. Of course the
role of the non-Abelian degrees of freedom in the confine-
ment mechanism remains an important issue for further
consideration in the future.

Let us now briefly present the way which leads to the
confinement of an external charge in the color dielectric ap-
proach. The dielectric scalar field was primary introduced
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to change the long range behavior of the electric field. The
scalar field is needed to cancel (or weaken) the singularity
of the electric field at the point where the charge is located.
The total energy is still infinite but now it is caused by the
behavior of the gauge field at the spatial infinity. Using
this approach one could model confinement of quarks and
get a reasonable inter–quark potential.

The Abelian part of the full color dielectric model can
be obtained by the following restriction:

Aa
µ = Aµδa3 (17)

and
φa = φδa3 . (18)

We consider an external static, point-like electric source:

ja
µ = 4πqδ(r)δ0µδa3 , (19)

located at the origin. We assume spherical symmetry of the
problem and introduce the following, purely electric Ansatz

φ = φ(r) (20)

and
Ea

i (r) = −∂iU(r)δa3, Aa
i = 0 , (21)

where φ(r) and U(r) are unknown functions. Moreover,
using assumed spherical symmetry one can write Ei(r) =
E(r)ei, where ei is a unit vector in the i direction.

With this assumptions the field equations can be rewrit-
ten in the following form

[
r2σ

(
φ2

Λ2

)
E

]′
= 4πqδ(r) (22)

and
∇2

rφ = − 1
2

σ′
φE2

a . (23)

The first equation can be immediately solved and it gives
a relation between the scalar and the electric field

E(r) =
q

r2

1
σ

. (24)

Here the role of the dielectric field is clearly visible. One
can write the last relation as E(r) = qeff

r2 , where qeff = q
σ is

a new effective coupling constant. The dielectric field acts
now as a medium in which the ‘normal’, electric field prop-
agates.

Substituting (24) into (23) we derive differential equa-
tion for the scalar field

∇2
rφ = − q2

2r4

σ′
φ

σ2 , (25)

which can be integrated for any dielectric function. The
general solution, given by an integral, reads∫

dφ√
1

σ(φ) + C
=

1
r

+ D , (26)

where C and D are integration constants. For the dielectric
function (13) proposed previously, we obtain the whole
family of solutions label by a positive parameter β0

Ea
i = A−8δq

xi

r3

(
1

rΛ
+

1
β0

) −8δ
1+4δ

δa3 (27)

and

φa = δa3AΛ

(
1

rΛ
+

1
β0

) 1
1+4δ

, (28)

A = [q(1 + 4δ)]
1

1+4δ . The new constant β0 corresponds to
D = 1

β0
. Moreover, because of the fact that we are looking

for finite energy solutions, the second integration constant
C has been set to zero.

Now, electric potential generated by point source is
given by

U = A−8δq
4δ + 1
4δ − 1

(
1

rΛ
+

1
β0

) 1−4δ
1+4δ

. (29)

One can see that for
δ >

1
4

(30)

the normal singularity in the electric potential, known from
usual Maxwell theory, no longer exists since the electric po-
tential approaches 0 when r → 0. One can notice that the
long range behavior of the electric field remains unchanged
i.e., it falls as 1

r2 . Due to that one can expect that obtained
solutions have finite energy. Precisely speaking, the corre-
sponding energy density takes the form

ε = A−8δ q2

r4

(
1

rΛ
+

1
β0

) −8δ
1+4δ

. (31)

Then, after integrating over three dimensional space, we
find that the total energy is indeed finite

EN = Λ
4δ + 1
4δ − 1

A−8δq2β
4δ−1
4δ+1
0 . (32)

In addition to presented family of finite energy solutions
there is a singular solution corresponding to β0 → ∞:

Ea
i =

xi

r
A−8δqΛ2

(
1

Λr

) 2
1+4δ

δa3 (33)

and

φa = δa3AΛ

(
1

Λr

) 1
1+4δ

. (34)

In this case the electric potential reads

U = qA−8δΛ
4δ + 1
4δ − 1

(
1

Λr

) 1−4δ
1+4δ

. (35)

This solution describes confining sector of the model. In the
vicinity of the point charge the solution behaves identically
as the finite energy configurations that is the singularity at
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r = 0 is removed. However, in contradiction to the previ-
ous case, a new singularity appears. The electric potential
diverges at the spatial infinity as rα where α ∈ (0, 1). The
standard linear confining potential is reproduced in the
limit when δ → ∞. One can easily show that the same
effects are observed if one analyzes the corresponding to-
tal energy.

Such confining inter–quarks potentials, weaker than
linear, are commonly discussed in the framework of non-
relativistic potential models. They have been found in fits
to charmonium and bottomium spectra (see for example
Zalewski–Motyka [17] and Martin [18] potentials). On the
other hand, there are some theoretical arguments based in
general on the analytical approach to QCD, which suggest
that energy stored in a flux-tube spanned between quarks
grows slower than linearly [19].

3.2 Magnetic case

Let us now turn to the purely magnetic sector of the the-
ory. We take advantage of the well–known spherical mag-
netic Ansatz:

φa = Λ
xa

r
h(r) (36)

and

Aa
i = εaik xk

r2 (g(r) − 1) , (37)

where functions h and g are yet to be determined. It should
be stressed that now the whole non-Abelian structure of
the dielectric field is taken into account. The electric part
of the gauge potential is equal to zero Aa

0 = 0. Then the
equations of motion (15), (16) take the following form

[
σ

(
h2

Λ2

)
g′

]′
+

1
r2 σ

(
φaφa

Λ2

)
g(1 − g2) = h2g (38)

and

− 1
r2 (r2h′)′+

2
r4 hg2+

1
2

σ′
h

[
2g′2

r2 +
(g2 − 1)2

r4

]
= 0 . (39)

Here prime denotes differentiation with respect to r. The
last equation possesses the obvious solution

g = 0 , (40)

which describes the magnetic monopole located at the ori-
gin. It is the famous Wu–Yang monopole [20]. Correspond-
ing gauge potential is singular at the point of the location
of the monopole.

Substituting the obtained solution (40) into (38) we
obtain the equation for the function h

− 1
r2 (r2h′)′ +

1
2r4 σ′

h = 0 . (41)

We rewrite it in terms of a new variable x = 1
r . Then

h′′
xx =

1
2

σ′
h . (42)

It can be easily integrated for any dielectric function σ

h′2
x = σ + C , (43)

where C is an integration constant. Finally, the solution is
given by the formula∫

dh√
σ(h) + D

=
1

rΛ
+ D . (44)

Here D is the second integration constant.
In case of the dielectric function (13) the integral (44)

can be calculated and we find

h = B

(
1

rΛ
+

1
β0

) 1
1−4δ

, (45)

where B = |1 − 4δ| 1
1−4δ . To summarize, the magnetic

monopole solution takes the form

Aa
i = −εaik xk

r2 (46)

and

φa = B
xa

r

(
1

rΛ
+

1
β0

) 1
1−4δ

. (47)

The pertinent energy density reads

ε = B8δ 1
r4

(
1

rΛ
+

1
β0

)
. (48)

It is easy to check that in spite of the singularity in the
gauge potential obtained field configuration has finite total
energy for δ > 1

4

EN = Λ
4δ − 1
4δ + 1

B8δβ
4δ+1
4δ−1
0 . (49)

Due to the interaction with the dielectric scalar field the
singular Wu–Yang magnetic monopole becomes regular-
ized.

Similarly as in the electric sector there is an infinite
energy solution. It is given by the following scalar field

φa(r) = BΛ

(
1

rΛ

) 1
1−4δ

. (50)

One can notice that these magnetic solutions are BPS con-
figurations. In order to prove that we will consider the
energy functional in the purely magnetic sector

EN =
∫

d3x

[
1
4

(
φ

Λ

)8δ

F a
ijF

a
ij +

1
2

(Diφ
a)(Diφ

a)

]
.

(51)
It can be rewritten in the form

EN =
1
4

∫
d3x

[(
φ

Λ

)4δ

F a
ij − εijk(Dkφa)

]2

+
1
2

∫
d3x

(
φ

Λ

)4δ

εijkF a
ij(Dkφa) , (52)
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then the Bogomolny equation reads

(
φ

Λ

)4δ

F a
ij = εijk(Dkφa) . (53)

It can be checked by direct calculation that solutions
found above fulfill this condition.

The whole family of our new solutions describing the
magnetic monopole configurations are non-Abelian gen-
eralization of the standard Abelian solution in the Dick
model [9, 14]. As one can easily notice non-Abelian con-
tents of the model does not change the solutions drastically.
They have similar dependence on the radial coordinate r
and in consequence the same singularities. Due to that
one can expect that also the electric solutions in the full
non-Abelian theory will not differ significantly from their
Abelian counterparts. Nonetheless this prediction has to
be checked in an explicit calculation.

It is clearly visible that non-Abelian generalization of
the color dielectric model has little impact on the magnetic
monopoles sector. From this point of view the gain of taking
more general model seems not worth the effort. However,
as it will be shown below, non-Abelian dielectric degrees
of freedom modify the topological contents of the model
and play crucial role in the glueball problem.

4 Faddeev–Niemi action

Besides the confinement of quarks the glueball problem i.e.,
the existence of particles built entirely of the gauge fields
is the most striking phenomenon in the non-perturbative
QCD. It is known from lattice theory [21] that such objects
should appear alone or with some non-zero quark contri-
bution (so-called hybrid states [22]). On the other hand,
in spite of numerous attempts, the theoretical understand-
ing of glueballs spectrum, their masses and other physical
features is rather in its infancy.

Between many ideas the proposition to describe glue-
balls as topological solitons looks particularly attractive.
Such an idea has been used to model hadrons as solitons
in the famous Skyrme model [23]. In case of glueballs it
has been suggested that they should be made of self-linking
flux-tubes of the gauge field. It follows from the observation
that in QCD gauge field generated among a quark and an
anti-quark is squeezed into a very thin tube. Such tubes
have tomake a loop or othermore complicated closed object
since glueballs do not contain quark degrees of freedom.

A model, widely considered in the context of the low
energy gluodynamics, which admits toroidal solitons reads

LFN = m2(∂µn)2 − 1
g

[n · (∂µn × ∂νn)]2 (54)

and is known as the Faddeev–Niemi model [4,5,24]. Here n
is a real, three component unit vector field, m is a mass scale
and g is a coupling constant. As one can expect this model
possesses non-trivial topology. Static solutionswithn → n0
for r → ∞ can be understood as maps from S3 to S2 which
are divided into disconnected homotopy classes π3(S2) and

classified by the Hopf invariant. In fact, knotted topological
solutions in this model have been recently found [25,26].

It is believed that this model can be obtained by ap-
propriate decomposition of the gauge fields and integrating
out some of the degrees of freedom. Such decomposition
should identify order parameter which is relevant in the low
energy QCD. Its most commonly accepted gauge covariant
form, in case of SU(2) group, is given by

Aa
µ = εabcnb∂µnc + Aµna + ρ∂µna + σεabcnc∂µnb , (55)

where besides previously defined field n we have a vector
field Aµ and two scalars ρ and σ. This decomposition is
motivated by the famous picture of the QCD vacuum as
a condensate of magnetic monopoles (see e.g., [27]). Here,
the condensate of monopoles is described by the topological
field n.

In the context of the non-Abelian color dielectric model
one can generalize the Cho–Faddeev–Niemi Ansatz (55) by
decomposition of the triplet scalar field

φa = φma , (56)

where m is a new three component unit vector and φ a
scalar field. They can be expressed by the primary color
dielectric field in the unique way

φ =
√

φaφa and ma =
φa

√
φaφa

if φa �= 0 for a = 1, 2, 3. In case of vanishing color dielectric
field this decomposition is not well-defined.

Let us now rewrite non-Abelian color dielectric model
in terms of recently introduced variables. The field strength
tensor takes the form

F a
µν = na[Fµν + (1 − ρ2 − σ2)Hµν ]

+ (Dµρ∂νna − Dνρ∂µna)

− εabcnb(Dµσ∂νnc − Dνσ∂µnc) , (57)

where we have introduced the following abbreviations

Fµν = ∂µAν − ∂νAµ,

Hµν = εabcna∂µnb∂νnc

and
Dµρ = ∂µρ + iAµρ.

In the same way we express the covariant derivative

Dµφa = ma∂µφ + φ(∂µma − mbnb∂µna + namb∂µnb)

− φ(εabc(nbAµ + ρ∂µnb)mc − σmbnb∂µna

+ σnamb∂µnb) . (58)

Finally, after substituting (57) and (58) into the Lagrangian
(11) we get

S =
∫

d4xσ

(
φ2

Λ2

)

× [
na[Fµν + (1 − ρ2 − σ2)Hµν ]
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+ (Dµρ∂νna − Dνρ∂µna)

−εabcnb(Dµσ∂νnc − Dνσ∂µnc)]
]2

+
[
ma∂µφ + φ(∂µma − mbnb∂µna + namb∂µnb)

− φ(εabc(nbAµ + ρ∂µnb)mc

−σmbnb∂µna + σnamb∂µnb)
]2

(59)

Now, we get rid of some degrees of freedom which are
supposed to play marginal role in the low energy limit i.e.,
we put Aµ = ρ = σ = 0. In the other words, we construct
a constrained model where only topological field n is left.
Moreover, we assume that the scalar field φ condensates
in its vacuum on a constant, non-zero value φ0

φ = φ0 = const. (60)

Then the model takes the form

L = − σ0

4
[n · (∂µn × ∂νn)]2 + (∂µn)2(n · m)2φ2

0

+ φ2
0(∂µn · m)2 − 2φ2

0n · m(∂µn · ∂µm)

+ 2φ2
0(∂µn · m)(∂µm · n) + φ2

0(∂µm)2 , (61)

where σ0 = σ(φ0). The last step to derive the Faddeev–
Niemi model is to assume that vector field m condenses
as well

m = m∞ = const. (62)

It is equivalent to the condensation of all components of
the primary color dielectric field φa. Eventually we find

L = − σ0

4
[n · (∂µn × ∂νn)]2 + (∂µn)2(n · m∞)2φ2

0

+ φ2
0(∂µn · m∞)2 . (63)

Here, one should make a few remarks concerning the La-
grangian obtained above.

First of all, it is expected that in the original Faddeev–
Niemi model the appearance of the dimensional parameter
m (i.e., existence of the usual kinetic term for the unit
vector field) is due to integrating out the Abelian Higgs
multiplet (Aµ, ρ, σ) from the full quantum theory. On the
contrary, in the non-Abelian color dielectric model, it is
sufficient just to neglect these degrees of freedom. How-
ever, this ‘contradiction’, can be easily explained. As we
have noticed before, the non-Abelian color dielectric model
is described by a classical effective action which has been
postulated using some arguments from lattice field the-
ory. The construction of the effective model was based on
blocking procedure of the gauge fields on the lattice. In our
framework the blocking plays identical role as integrating
out some quantum fields. Thus, to find action for the unit
vector field we should neglect non-topological fields – not to
integrate them. In some sense, it was already done. Because
of that, the problem known from the Faddeev–Niemi model
concerning correct integration of Abelian Higgs multiplet
can be formulated here as a problem of deriving the non-
Abelian color dielectric Lagrangian from QCD. Due to the

fact that the mass parameter is given by the vacuum value
of the dielectric field φ a particular form of the potential
V (φ) is needed.

Secondly, one can notice the fundamental difference be-
tween the original Faddeev–Niemi model and our proposal.
Namely, the Faddeev–Niemi action is invariant under O(3)
rotations. On account of the fact that the invariance group
of the ground state is O(2) the spontaneous symmetry
breaking occurs and two Goldstone bosons should emerge.
Moreover, there is no mass gap in the spectrum of exci-
tation of this model. Such problems can disappear in the
model postulated here because of the condensation of the
color dielectric field m. Our model breaks O(3) symme-
try explicitly on the Lagrangian level and one can expect
that no Goldstone boson appears. In fact, it has been con-
firmed by Dittmann et. al. in a similar model [28] (they
included symmetry breaking terms with a source filed h
in the Faddeev–Niemi action, which in our model is just
the condensation value of the field m). In addition, they
observed a mass gap as well.

Let us notice that the symmetry breaking is due to the
very non-trivial, dielectric-like term. It is unlikely the stan-
dard procedure where the symmetry breaking was given by
some potential terms [29], [30]. One should remember that
the breaking of the symmetry and removing of the Gold-
stone bosons is not sufficient to exclude all massless excita-
tions. There is still a chance to have such solutions. Due to
that the existence of the mass gap is still an open problem.

5 Conclusions

In the paper the minimal non-Abelian generalization of
the color dielectric model has been proposed. Using some
arguments from the lattice gauge theory we argue that the
model should consist of SU(2) gauge field and non-Abelian
color dielectric field. On account of the fact that this di-
electric field belongs to the fundamental representation of
the SU(2) group its kinetic term is given by the covariant
derivative instead of the standard one. That makes the
coupling between gauge and color dielectric fields double
folded – minimally by the covariant derivative and non-
minimally by color dielectric function. This last coupling
is assumed to be identical as in the standard Abelian color
dielectric case.

It has been shown that such model can serve well to
reproduce confinement of external electric sources already
on the classical level. Discussion of the electric sector has
been carried out in the Abelian sector of our model. Even in
this restricted theory there is a purely electric configuration
generated by the external static point-like source having
infinite total energy. However, in contradiction to the usual
Maxwell electrodynamics, the singularity appears due to
the long range behavior of the fields. We have found that
electric potential (and energy in the vicinity of the charge)
grows as rα, where α ∈ (0, 1), for the dielectric function
(13). That is in good agreement with phenomenological
data and the latest theoretical considerations. In addition,
there exists single-parameter family of finite energy solu-
tions. Analogously, finite as well as infinite energy solution
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has been found in the magnetic sector of the theory. In this
case restriction to theAbelian sector is no longer needed and
one can find magnetic monopole solution surrounded by the
non-Abelian color dielectric field. We have also proved that
they are BPS solution fulfilling the corresponding Bogo-
molny equations. It is easy to notice that adding a potential
term to the action will obviously fix the asymptotic value
of the dielectric field and in consequence, from the whole
family of solutions only one will be preserved.

We have also observed that the proposed model gives,
in the limit when the color dielectric field condensates and
gauge field is constrained only to the so-called topological
degrees of freedom, a modified Faddeev–Niemi Lagrangian
which possesses toroidal soliton solutions interpreted as
glueballs. Our modification breaks O(3) symmetry explic-
itly on the Lagrangian level. This is a great advantage of the
model since the massless Goldstone bosons are excluded.

To summarize, the non-Abelian color dielectric model
seems to be a pretty good candidate for the correct effec-
tive model for the low energy gluodynamics. It describes
simultaneously quark confinement (with potential consis-
tent with experimental data) and glueball states. To the
best of our knowledge, this is the first model which is able to
joint these features. It clearly exposes the necessity of taking
into account the full set of non-Abelian degrees of freedom
in the framework of the color dielectric approach. Even in
the first, naive attempt such a theory is considerably better
suited to description of non-perturbative gluonic dynam-
ics than commonly used Abelian color dielectric models.
Therefore it shows the direction in which the progress can
be achieved in the future.

Of course, there are a lot of questions which still need
to be answered. First of all, one has to get rid of the finite
energy solutions (electric and magnetic). It can be done
by inserting a potential term into the Lagrangian which
would force vanishing of the scalar field at the spatial in-
finity. On the other hand one can observe that this makes
the glueball sector trivial. In our approach the glueball
spectrum is strongly dependent on the vacuum value of
the scalar field. It is possible, for zero vacuum value of the
scalar fields, to trivialize any knot soliton – it costs zero
energy to untie any object of this kind. It could be cured
by a more complicated potential with two minima – for
zero and non-zero scalar field. Then confining and glueball
solutions would appear in two different phases. It does not
seem to be a satisfactory solution to this issue. We believe
that more subtle mechanism can be responsible for mak-
ing finite energy solutions unstable and for removing them
from the physical spectrum of the theory. Moreover, one
can take advantage of the approach recently proposed by
Bazeia and collaborators and analyze dynamical sources
(quarks) [31].

Secondly, the influence of theAbelianHiggsmultiplet on
the glueball sector should be studied. In particular, one has
to clarified the role of the Abelian gauge field Aµ. Presence
of this field is crucial for preserving gauge invariance after
performing the decomposition.

The Faddeev–Niemi model with explicitly broken O(3)
symmetry also needs more detailed studies.

However, in our opinion the most urgent challenge in the
presented approach is to get deeper insight into the relation
of our effective model and the underlying quantum theory.
We plan to address this issue in the nearest future.

To conclude, the model considered in our paper should
be treated as a first but quite encouraging step on the
way to the correct effective theory for the low energy glu-
odynamics. Further exploration of this area is undoubt-
edly mandatory.

Acknowledgements. A. W. gratefully acknowledges the support
from the Foundation for Polish Science. The work of M. Ś. was
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